Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Vitexin attenuates smoke inhalation-induced acute lung injury in rats by inhibiting oxidative stress via PKC β/p66Shc signaling pathway

Xuxin Chen1,2, Huming Li1, Hao Cheng1, Meng Liu1, Fan Wang1, Jiguang Meng1,2, Zhihai Han1,2

1Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100037; 2School of Medicine, South China University of Technology, Guangzhou 510006, PR China.

For correspondence:-  Zhihai Han   Email: zhihaihandoctor@163.com

Accepted: 1 December 2022        Published: 29 December 2022

Citation: Chen X, Li H, Cheng H, Liu M, Wang F, Meng J, et al. Vitexin attenuates smoke inhalation-induced acute lung injury in rats by inhibiting oxidative stress via PKC β/p66Shc signaling pathway. Trop J Pharm Res 2022; 21(12):2507-2518 doi: 10.4314/tjpr.v21i12.2

© 2022 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the protective effect of vitexin on smoke inhalation-induced acute lung injury (SI-ALI), and the underlying mechanism of action.
Methods: The ALI rat model was established by inhalation of smoke in a closed smoke chamber. Survival rate, arterial blood gas analysis, wet-to-dry weight ratio of lung tissues, bronchoalveolar lavage fluid protein concentration, lung tissue histology, and oxidative stress and inflammation level were evaluated. expressions of protein kinase C β (PKC β), p66Shc, and phosphorylated p66Shc were determined by western blot or quantitative reverse transcription-polymerase chain reaction.
Results: Compared with smoke inhalation group, vitexin alleviated the decline in arterial partial pressure of oxygen (p < 0.05), reduced lung tissue exudation and pathological lung tissue damage, inhibited the expression of PKC β/p66Shc signaling pathway proteins, downregulated the level of oxidative stress and inflammation, and ultimately improved the survival rate in SI-ALI rats (p < 0.05).
Conclusion: Vitexin attenuates SI-ALI in rats by alleviating oxidative stress via inhibition of PKC β/p66Shc signaling pathway. Thus, this compound is a potential agent for the treatment of SI-ALI.

Keywords: Vitexin, Smoke inhalation, Acute lung injury, Oxidative stress, p66Shc

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates